مروری بر روش های نوین جهت بهینه سازی در کاهش ترافیک های شهری

نوع مقاله : مقالات مروری

نویسندگان

1 مدرس دانشگاه، گروه مهندسی عمران، موسسه آموزش عالی غیرانتفاعی صائب، ابهر، زنجان، ایران

2 دانشجوی کارشناسی ارشد راه و ترابری، گروه مهندسی عمران، موسسه آموزش عالی غیرانتفاعی صائب، ابهر، زنجان، ایران

10.22034/cpj.2022.04.02.1141

چکیده

 امروزه با افزایش حجم تراقیک و رشد سفرها، ساماندهی‌‌‍ و مدیریت ترافیک یکی از ضرورت های مدیریت شهری می باشد. همچنین، شناسایی ترافیک در سال های اخیر به یک کار چالش برانگیز تبدیل شده است. اخیراً روش‌های یادگیری عمیق به طور گسترده برای طبقه‌بندی ترافیک شبکه مورد مطالعه قرار گرفته‌اند. متأسفانه، این مدل ها به حجم زیادی از داده های آموزشی نیاز دارند. چالش دیگر با اکثر روش های طبقه بندی ترافیک این است که ویژگی ها باید توسط یک متخصص استخراج شوند. در این روش ها یافتن ویژگی های مورد نظر که منجر به دسته بندی بهتر می شود بسیار خسته کننده و زمان بر است. در نتیجه نیاز به اقدامات نوین جهت کاهش ترافیک شهری بیش از پیش لازم می دارد. هدف اصلی از این مطالعه بررسی روش های نوین کنترل ترافیک شهری است. که بیشتر بر پایه تحقیقات پیشین و تحلیل آن‌ها استوار است. مطالعات مربوط به روش ها و مدل های جدید مرتبط با کاهش ترافیک از جمله، تکنولوژی، فناوری و سیستم های هوشمند درسالهای اخیر جمع‌آوری و مورد بررسی قرار گرفتند. نتایج نشان می دهد که استفاده از این فناوری های جدید می تواند باعث تخمین حجم ترافیک های پنهان، بهبود جریان ترافیک، پیش بینی واقعی عملکردهای زمان سفر و حجم ترافیک، تعیین حالت سرویس دهی سطح خدمات مناسب، افزایش ظرفیت و کارایی زیر ساخت های موجود حمل و نقل و مشخص نمودن حداکثر طول صف، توقف صف، تاخیر خودرو، تاخیر توقف و تعداد توقف‌ها شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of New Methods for Optimizing the Reduce of Urban Traffic

نویسندگان [English]

  • Reza Akbarigheibi 1
  • Daryoush Jalili 2
  • Vahid Bakhshi 2
1 University instructor, Engineering Faculty, Saeb Non-Profit Higher Education Institute, Abhar, Zanjan, Iran
2 Master Student of Road and Transportation, Department of Civil Engineering, Saeb Non-Profit Higher Education Institute, Abhar, Zanjan, Iran
چکیده [English]

Today, with the increase in the volume of traffic and the growth of travel, organizing and managing traffic is one of the necessities of urban medicine. Also, Traffic identification has become a challenging task in recent years. Recently, deep learning methods have been extensively studied for network traffic classification recently. Unfortunately, these models require a large amount of training data. Another challenge with most traffic classification methods is that the features must be extracted by an expert. In these methods, finding the desired features that lead to a better classification is very tedious and time-consuming. Therefore, new measures are needed to reduce urban traffic more than before. The purpose of this study is to investigate new methods of urban traffic control. Which is mostly based on previous research and analysis. Studies on new methods and models of traffic reduction, including technology, technology and intelligent systems, have been collected and reviewed in recent years. The results show that the use of these new technologies can estimate the volume of hidden traffic, improve traffic flow, accurately predict travel time operations and traffic volume, determine the appropriate service level, increase the capacity and efficiency of existing infrastructure. Transportation and specification of travel time, maximum queue length, queue stop, vehicle delay, stop delay and number of stops.

کلیدواژه‌ها [English]

  • Urban Traffic
  • intelligent traffic system
  • Traffic management
  • traffic optimization
Ahmadi, SH., Taheri, N., (2019). Presenting a model for estimating telework demand to reduce urban traffic with the help of artificial neural network. 18th International Conference on Transportation and Traffic Engineering. Persian.
Akhondi, M., Mesgari, M.S. (2018). Simulation of ITS base factor in order to control urban traffic using GPS system. Fifth National Conference on Applied Research in Civil Engineering, Architecture and Urban Management. Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran. Persian.
Derakhshan, F., Khezerlo, F. (2017). Design and implementation of an intelligent integrated method for controlling urban traffic at intersections. Journal of Electrical Engineering, University of Tabriz, Volume 74, Number 3, Serial number 1. Persian.
Derakhshan, F., Shahpasandi, N. (2016). Design and implementation of public vehicle control system in urban traffic using multi-factor systems. 8th International Conference on Information Technology and Knowledge. Persian.
Ferdosi, S., Shokrifirozha, P. (2015). Reduction of intra-city traffic problems with the approach of adjusting the direction of traffic. 87- Quarterly Journal of Urban Planning Studies, Second Year, No. 7, fall 2014, Pages 11. Persian.
Graham, D. J., & Glaister, S. (2004). Road traffic demand elasticity estimates: a review. Transport reviews, 24(3), 261-274.
Hajitahr, T., Karimi, A. (2016).Introducing a new algorithm for predicting traffic volume at urban intersections based on neural-fuzzy networks. The Second International Conference and the Third National Conference on the Application of New Technologies in Engineering Sciences. Persian.
Hara, Y., Suzuki, J., & Kuwahara, M. (2018). Network-wide traffic state estimation using a mixture Gaussian graphical model and graphical lasso. Transportation Research Part C: Emerging Technologies, 86, 622-638.
Hasanpor, SH., Saffari, M., Godarzi, M. (2017). Evaluation of intelligent transportation systems in urban traffic. Fourth National Conference on Sustainable Development in Geography and Planning, Architecture and Urban Planning. Persian.
Hou, G., Chen, S., & Bao, Y. (2022). Development of travel time functions for disrupted urban arterials with microscopic traffic simulation. Physica A: Statistical Mechanics and its Applications, 126961.
Kwon, J., Varaiya, P., & Skabardonis, A. (2003). Estimation of truck traffic volume from single loop detectors with lane-to-lane speed correlation. Transportation Research Record, 1856(1), 106-117.
Sandhyavitri, A., Maulana, A., Ikhsan, M., Putra, A. I., Husaini, R. R., & Restuhadi, F. (2021, October). Simulation Modelling of Traffic Flows in the Central Business District Using PTV Vissim in Pekanbaru, Indonesia. In Journal of Physics: Conference Series (Vol. 2049, No. 1, p. 012096). IOP Publishing.
SINGH, S. K., & BANDYOPADHYAYA, R. (2019). Modeling Optimal Mode Share of Paratransits using VISSIM for Congested One-Way Traffic Urban Roads. In Proceedings of the Eastern Asia Society for Transportation Studies (Vol. 12).
Thathsarani, A. A. T., & Lanel, G. H. J. (2019). A Model to Reduce Traffic Congestion in Colombo City. International Journal of Scientific and Research Publications, 9(6).
Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too? Current biology, 27(14), R713-R715.10.
 Xing, J., Wu, W., Cheng, Q., & Liu, R. (2022). Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights. Physica A: Statistical Mechanics and its Applications, 127079.
Yu, Y., Cui, Y., Zeng, J., He, C., & Wang, D. (2022). Identifying traffic clusters in urban networks based on graph theory using license plate recognition data. Physica A: Statistical Mechanics and its Applications, 591, 126750.
 
دوره 4، شماره 2 - شماره پیاپی 36
اردیبهشت 1401
صفحه 65-74
  • تاریخ دریافت: 0-365 فروردین 781
  • تاریخ بازنگری: 0-361 فروردین 781
  • تاریخ پذیرش: 0-361 فروردین 781
  • تاریخ اولین انتشار: 0-361 فروردین 781