| ماهنامه| ISC | فنی،مدیریتی،حقوقی| اعتبار،چابکی،پاسخگویی|

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری راه و ترابری، گروه مهندسی عمران، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

2 گروه مهندسی عمران، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران

چکیده

فواید بسیار مهم آسفالت سرد شامل حفظ منابع طبیعی، کاهش هزینه و انرژی است. در این بین مخلوط‌های آسفالتی گرم دارای دوام و مقاومت بالاتری نسبت به مخلوط‌های سرد هستند ولی استفاده از مخلوط‌های آسفالتی گرم سبب آلودگی‌های زیست محیطی، انتشار گازهای سمی و مضر و همچنین کاهش ایمنی کارگران می‌گردد. بنابراین امروزه استفاده از مخلوط‌های آسفالت سرد به منظور حفظ محیط زیست و همچنین خطرات کار رو به افزایش است، که از این نوع آسفالت به همراه قیر امولسیون استفاده می‌گردد. با این وجود استفاده از آسفالت سرد تولید شده در کارخانه با قیر امولسیون مشکلاتی مانند شیارشدگی، ترک‌های حرارتی، کاهش مقاومت و ... را در پی دارد. بنابراین نیاز به استفاده از مواد افزودنی به منظور بهبود خصوصیات عملکردی این نوع آسفالت احساس می‌گردد. با توجه به اهمیت موضوع، در این تحقیق مروری بر مطالعات صورت گرفته در زمینه تاثیر افزودنی‌های مختلف بر مشخصات عملکردی آسفالت سرد بازیافتی تولید شده با قیر امولسیون انجام شده است.  در نهایت  با توجه به نتایج مطالعات صورت گرفته می‌توان گفت که مخلوط‌های آسفالتی تولید شده با قیر امولسیون نسبت به عوامل محیطی و رطوبت، مقاومت بسیار پایینی دارند و بنابراین استفاده از افزودنی ها توصیه می‌گردد. نتایج نشان داد که استفاده از افزودنی‌های مختلف سبب بهبود مقاومت مخلوط آسفالتی در مقابل رطوبت می‌گردد که این موضوع در مورد نمونه‌های اصلاح شده با ترکیب پلیمر با سیمان و پلیمر با آهک نسبت به سایر افزودنی‌ها نمود بیشتری از خود نشان داد. همچنین مواد پلیمری به علت ایجاد شبکه‌ای سه‌بعدی در قیر و در واقع مسلح کردن قیر می‌توانند موجب افزایش مقاومت آسفالت و استقامت مارشال شوند.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Effect of Different Additives on the Mechanical Properties of Cold Asphalt Produced with Emulsion Bitumen

نویسندگان [English]

  • Hadi Azizi 1
  • Mohsen Amouzadeh Omrani 2

1 PhD student in Civil Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

2 Department of Civil Engineering, Savadkuh Branch, Islamic Azad University, Savadkooh, Iran

چکیده [English]

Some of the important benefits of cold asphalt include conservation of natural resources, cost and energy reduction. Meanwhile, warm asphalt mixtures have higher durability and resistance than cold mixtures, but the use of hot asphalt mixtures causes environmental pollution, the release of toxic and harmful gases, and also reduces the safety of workers. Therefore, today, the use of cold asphalt mixtures is increasing in order to protect the environment and also work risks, which is used with this type of asphalt along with emulsion bitumen. However, the use of cold asphalt produced in factories with emulsion bitumen leads to problems such as rutting, thermal cracks, reduction in strength, etc. Therefore, the need to use additives in order to improve the functional characteristics of this type of asphalt is felt. Considering the importance of the subject, in this research, a review of the studies conducted in the field of the effect of different additives on the functional characteristics of recycled cold asphalt produced with emulsion bitumen has been done. Finally, according to the results of the studies, it can be said that asphalt mixtures produced with emulsion bitumen have very low resistance to environmental factors and humidity, and therefore the use of additives is recommended. The results showed that the use of different additives improves the resistance of the asphalt mixture against moisture, which is more evident in the samples modified by combining polymer with cement and polymer with lime than other additives. shows. Also, due to creating a three-dimensional network in the bitumen and actually reinforcing the bitumen, polymer materials can increase the asphalt resistance and Marshall endurance.

کلیدواژه‌ها [English]

  • Cold asphalt
  • Emulsion bitumen
  • Additives
  • Mechanical properties
Abbasnejad Mousavi Bora, S. Y., & Modares, A. (2017). Mechanical behavior of cold asphalt containing bitumen emulsion and cement, The third international conference on civil engineering, Architecture and urban design, Tabriz.
Al-Hdabi, A., Al Nageim, H., Ruddock, F., & Seton, L. (2014). Development of sustainable cold rolled surface course asphalt mixtures using waste fly ash and silica fume. Journal of materials in civil engineering26(3), 536-543.
Al-Mehthel, M., Wahhab, H. I. A., Al-Idi, S. H., & Baig, M. G. (2010, April). Sulfur extended asphalt as a major outlet for sulfur that outperformed other asphalt mixes in the Gulf. In Sulfur world symposium, Qatar.
Ameli, A., Ziyari, H., Shahriari Holasu, H., Babagoli, R., & Aghapur, S. (2013). The effect of cement and lime on the functional properties of cold recycled mixes with polymer bitumen emulsion. Transportation research paper. 10 (4): 432-423. (In Persian).
Ameri, M., & Behnood, A. (2012). Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates. Construction and Building Materials26(1), 475-480.
Amouzadeh Omrani, M., & Modarres, A. (2018). Emulsified cold recycled mixtures using cement kiln dust and coal waste ash-mechanical-environmental impacts. Journal of cleaner production, 199, 101-111.
Amouzadeh Omrani, M., & Modarres, A. (2019). Stiffness and fatigue behavior of emulsified cold recycled mixture containing waste powder additives: mechanical and microstructural analysis. Journal of Materials in Civil Engineering31(6), 04019061.
Baskandi, D. (2017). Bituminous Pavement Recycling–Effective Utilization of Depleting Non-Renewable Resources. International Journal of Engineering and Science (IJES)6(3), 57-65.
Behnood, A., Gharehveran, M. M., Asl, F. G., & Ameri, M. (2015). Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash. Construction and Building Materials96, 172-180.
Brown, S., & Needham, D. (2000). A study of cement modified bitumen emulsion mixtures. Asphalt Paving Technology69, 92-121.
Chávez-Valencia, L. E., Alonso, E., Manzano, A., Pérez, J., Contreras, M. E., & Signoret, C. (2007). Improving the compressive strengths of cold-mix asphalt using asphalt emulsion modified by polyvinyl acetate. Construction and Building Materials21(3), 583-589.
Cross, S. A. (1999). Experimental cold in-place recycling with hydrated lime. Transportation Research Record1684(1), 186-193.
Cross, S. A., & Young, D. A. (1997). Evaluation of type C fly ash in cold in-place recycling. Transportation research record1583(1), 82-90.
Didier, L., Miguel, B. J., Luis, P. J., & Jiri, F. (2008). In-situ validation of the SCORE Project. Carreteras4(158), 84-91.
Dołżycki, B., & Jaskuła, P. (2019). Review and evaluation of cold recycling with bitumen emulsion and cement for rehabilitation of old pavements. Journal of Traffic and Transportation Engineering (English Edition)6(4), 311-323.
Du, S. (2015). Performance characteristic of cold recycled mixture with asphalt emulsion and chemical additives. Advances in Materials Science and Engineering2015.
Gao, L., Ni, F., Ling, C., & Yan, J. (2016). Evaluation of fatigue behavior in cold recycled mixture using digital image correlation method. Construction and Building Materials102, 393-402.
Gao, L., Ni, F., Luo, H., & Charmot, S. (2015). Characterization of air voids in cold in-place recycling mixtures using X-ray computed tomography. Construction and Building Materials84, 429-436.
Gómez-Meijide, B., Pérez, I., Airey, G., & Thom, N. (2015). Stiffness of cold asphalt mixtures with recycled aggregates from construction and demolition waste. Construction and Building Materials77, 168-178.
Gorkem, C., & Sengoz, B. (2009). Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Construction and Building Materials23(6), 2227-2236.
Gravand, E. (2013). The effect of using nano silica and lime on the properties of recycled cold asphalt mixture with bitumen emulsion. Master's thesis. Technical College. Non-Governmental and Non-Profit Institute of Higher Education Imran Va Tu. (In Persian).
Haghigi Murad, E., Saidi Jam, S., Mohammadi, M. R., & Rokhzadpour, Sh. (2016). Comparison of mechanical behavior of recycled asphalt with bitumen emulsion containing cement and polypropylene fibers, the third international conference and exhibition on sustainable development in road construction with an approach to environmental protection, Shiraz. (In Persian).
Hicks, R. G. (2002). Asphalt rubber design and construction guidelines. Northern California Rubberized Asphalt Concrete Technology Center-California Integrated Waste Management Board, Sacramento, CA.
Issa, R., Zaman, M. M., Miller, G. A., & Senkowski, L. J. (2001). Characteristics of cold processed asphalt millings and cement-emulsion mix. Transportation Research Record1767(1), 1-6.
Javaheri, S., Javaheri, A. G., & Latifi, A. (2016). The 9th Iran Bitumen and Asphalt Conference. Tehran
Kavussi, A., & Modarres, A. (2010a). A model for resilient modulus determination of recycled mixes with bitumen emulsion and cement from ITS testing results. Construction and Building Materials24(11), 2252-2259.
Kavussi, A., & Modarres, A. (2010b). Laboratory fatigue models for recycled mixes with bitumen emulsion and cement. Construction and Building Materials24(10), 1920-1927.
Kim, Y., & Lee, H. D. (2012). Performance evaluation of Cold In-Place Recycling mixtures using emulsified asphalt based on dynamic modulus, flow number, flow time, and raveling loss. KSCE journal of civil engineering16(4), 586-593.
Lee, S. J., Akisetty, C. K., & Amirkhanian, S. N. (2008). The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements. Construction and Building Materials22(7), 1368-1376.
Mehrara, A., & Khodaii, A. (2013). A review of state of the art on stripping phenomenon in asphalt concrete. Construction and Building Materials38, 423-442.
Modarres, A., Nejad, F. M., Kavussi, A., Hassani, A., & Shabanzadeh, E. (2011). A parametric study on the laboratory fatigue characteristics of recycled mixes. Construction and Building Materials25(4), 2085-2093.
Niazi, Y., & Jalili Ghazizadeh, M. (2008). The effect of cement and lime on the properties of cold recycled asphalt mixtures using bitumen emulsion, 4th National Congress of Civil Engineering, Tehran. (In Persian).
Niazi, Y., & Jalili, M. (2009). Effect of Portland cement and lime additives on properties of cold in-place recycled mixtures with asphalt emulsion. Construction and Building Materials23(3), 1338-1343.
O'Leary, M. D., & Williams, R. D. (1992). In situ cold recycling of bituminous pavements with polymer-modified high float emulsions. Transportation Research Record, (1342).
Omrani, M. A., & Modarres, A. (2018). Emulsified cold recycled mixtures using cement kiln dust and coal waste ash mechanical-environmental impacts. Journal of cleaner production199, 101-111.
Oruc, S., Celik, F., & Akpinar, M. V. (2007). Effect of cement on emulsified asphalt mixtures. Journal of materials engineering and performance16(5), 578-583.
Presti, D. L. (2013). Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Construction and Building Materials49, 863-881.
Rogge, D. F., Hicks, R. G., Scholz, T. V., & Allen, D. (1992). Case histories of cold in-place recycled asphalt pavements in central oregon. Transportation Research Record, (1337).
Rutherford, T., Wang, Z., Shu, X., Huang, B., & Clarke, D. (2014). Laboratory investigation into mechanical properties of cement emulsified asphalt mortar. Construction and Building Materials65, 76-83.
Sengoz, B., & Isikyakar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials22(9), 1897-1905.
Strickland, D., Colange, J., Martin, M., & Deme, I. (2008). Performance properties of paving mixtures made with modified sulphur pellets. In Proceedings of the international ISAP symposium on asphalt pavements and environment, ISAP, Zurich (pp. 64-75).
Stuart, K. (1990). Performance evaluation of sulfur-extended asphalt pavements: laboratory evaluation.
Taherkhani, H., Firoozei, F., & Bolouri Bazaz, J. (2016). Evaluation of the mechanical properties of the cement treated cold-in-place recycled asphalt mixtures. International Journal of Transportation Engineering3(4), 301-312.
Tarefder, R. A., Zaman, M., Sisson, R., & Ting, C. F. (2006). Field and laboratory properties of lime-treated cold in-place recycled asphalt pavements. Journal of Testing and Evaluation34(1), 31-41.
Thanaya, I. N. A. (2007). Evaluating and improving the performance of cold asphalt emulsion mixes. Civil Engineering Dimension9(2), pp-64.
Thomas, T., Kadrams, A., & Huffman, J. (2000). Cold in-place recycling on Kansas US-283. In 79th annual meeting of TRB.
Timm, D. H., Robbins, M. M., Willis, J. R., Tran, N. and Taylor, A. J. (2011). Evaluation of mixture per formance and structural capacity of pavements using shell Thiopave: Phase II - Construction, laboratory evaluation, and full--scale testing of Thiopave test sections - one-year report. Report 11-03, National Center for Asphalt Technology, Auburn University,
Xiao, F., & Amirkhanian, S. N. (2009). Laboratory investigation of moisture damage in rubberised asphalt mixtures containing reclaimed asphalt pavement. International Journal of Pavement Engineering10(5), 319-328.
Yan, J., Ni, F., Yang, M., & Li, J. (2010). An experimental study on fatigue properties of emulsion and foam cold recycled mixes. Construction and Building Materials24(11), 2151-2156.
Yildirim, Y. (2007). Polymer modified asphalt binders. Construction and Building Materials21(1), 66-72.