| ماهنامه| ISC | فنی،مدیریتی،حقوقی| اعتبار،چابکی،پاسخگویی|

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اموزشی ساخت و اب -دانشکده عمران معماری و هنر-دانشگاه ازاد اسلامی واحد علوم و تحقیقات-تهران-ایران

2 استادیار، مهندسی صنایع، دانشکده مهندسی صنایع، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.

3 استادیار، مهندسی عمران،دانشکده عمران، معماری و هنر واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

امروزه در مراکز تجاری ترکیب حسگرها و محرک‌های، ساختمان‌های هوشمند، به مالکان اجازه می‌دهد تا در مصرف انرژی صرفه‌جویی کنند، امنیت را افزایش دهند، اطلاعاتی در مورد محیط کار خود به کاربران بدهند و مستقیماً با استفاده از اینترنت روی ساختمان عمل کنند. ساختمان های هوشمند از حسگرهای اینترنت اشیا برای نظارت بر پارامترهای محیطی داخل ساختمان، مانند دما، رطوبت، روشنایی و کیفیت هوا استفاده می کنند. در این مقاله، ما یک راه‌حل ساختمان هوشمند مبتنی بر اینترنت اشیا برای مدیریت محیط داخلی پیشنهاد می‌کنیم که هدف آن ارائه عملکردهایی نظیر نظارت بر پارامترهای محیطی اتاق و تشخیص تعداد کاربران در فضا می باشد؛ همچنین یک پلتفرم ابری که در آن نهادهای مجازی داده‌های به‌دست‌آمده توسط حسگرها را جمع‌آوری می‌کنند و ابر موجودیت‌های مجازی وظایف تجزیه و تحلیل داده‌ها را با استفاده از الگوریتم‌های یادگیری سیستم انجام می‌دهند. داشبورد کنترلی برای مدیریت و کنترل ساختمان نیز در این پلتفرم ابری تعبیه شده است. هدف این مقاله، تعریف، توسعه و نتایج یک پروژه را برای استفاده از حسگرها در یک مرکز تجاری پیش فرض برای نظارت و شرایط موجود در واحد های تجاری با استفاده از فناوری‌های اینترنت اشیا می باشد. در این پژوهش چیدمان و محل قرارگیری حسگرها توضیح داده شده است و به دنبال آن سنسورهای مورد استفاده، و رابط های بی سیم و فناوری های ابری مورد استفاده توضیح داده شده است. نتایج پروژه بر اساس استفاده از Bluemix با Node Red ارائه شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluating Appropriate Strategies for Commercial Buildings’ Automation Utilizing the Internet of Things in Tehran

نویسندگان [English]

  • Mohamadamin Mirbagheri 1
  • Hasan Javanshir 2
  • Majid Safehian 3

1 Faculty of Civil Engineer, Architecture and Art-ISLAMIC AZAD UNIVERSITY -SCIENCE AND RESEARCH BRACH Tehran-Iran

2 Assistant Professor, Industrial Engineering, Faculty of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

3 Assistant Professor, Civil Engineering, Faculty of Civil Engineering, Architecture and Art, Research Sciences Unit, Islamic Azad University, Tehran, Iran

چکیده [English]

Today, smart buildings, which combine sensors and actuators, allow owners to save energy, increase security, provide users with information about their work environment, and operate directly on the building via the Internet. Indoor environmental parameters such as temperature, humidity, lighting, and air quality are monitored by IoT sensors in smart buildings. In this paper, we propose a smart building solution for managing the indoor environment based on the Internet of Things, which aims to provide functions such as monitoring the environmental parameters of the room and detecting the number of users in the space. It is also a cloud platform where virtual entities collect data obtained by sensors and cloud virtual entities perform data analysis tasks using system learning algorithms. This cloud platform also includes a control dashboard for managing and controlling the building. The goal of this article is to define, develop, and present the results of a project that uses sensors in a standard business center to monitor and condition business units using Internet of Things technologies. The arrangement and location of the sensors are explained in this study, followed by the sensors used, wireless interfaces, and cloud technologies. The project results are presented using Bluemix and Node Red.

کلیدواژه‌ها [English]

  • Internet of things
  • smart building
  • Energy
  • Security
  • Commercial building smartness
  1. D’Oca, S.; Hong, T.; Langevin, J. The human dimensions of energy use in buildings: A review. Sustain. Energy Rev. 2018, 81, 731–742. [CrossRef]
  2. Aguilar, J.; Garcès-Jimènez, A.; Gallego-Salvador, N.; De Mesa, J.A.G.; Gomez-Pulido, J.M.; Garcìa-Tejedor, À.J. Autonomic Management Architecture for Multi-HVAC Systems in Smart Buildings. IEEE Access 2019, 7, 123402–123415. [CrossRef]
  3. Dong, B.; Prakash, V.; Feng, F.; O’Neill, Z. A review of smart building sensing system for better indoor environment control. Energy Build. 2019, 199, 29–46. [CrossRef]
  4. Chen, Z.; Jiang, C.; Xie, L. Building occupancy estimation and detection: A review. Energy Build. 2018, 169, 260–270. [CrossRef] Hong, T.; Yan, D.; D’Oca, S.; fei Chen, C. Ten questions concerning occupant behavior in buildings: The big picture. Build. Environ. 2017, 114, 518–530. [CrossRef]
  5. Agarwal, Y.; Balaji, B.; Gupta, R.; Lyles, J.; Wei, M.; Weng, T. Occupancy-Driven Energy Management for Smart Building Automation. In Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, Zurich, Switzerland, 2 November 2010. [CrossRef]
  6. Yang, Z.; Becerik-Gerber, B. The coupled effects of personalized occupancy profile based HVAC schedules and room reassignment on building energy use. Energy Build. 2014, 78, 113–122. [CrossRef]
  7. Wang, F.; Feng, Q.; Chen, Z.; Zhao, Q.; Cheng, Z.; Zou, J.; Zhang, Y.; Mai, J.; Li, Y.; Reeve, H. Predictive control of indoor environment using occupant number detected by video data and CO2 Energy Build. 2017, 145, 155–162. [CrossRef]
  8. Leephakpreeda, T. Adaptive Occupancy-based Lighting Control via Grey Prediction. Environ. 2005, 40, 881–886. [CrossRef]
  9. Mokhtari, R.; Jahangir, M.H. The effect of occupant distribution on energy consumption and COVID-19 infection in buildings: A case study of university building. Environ. 2021, 190, 107561. [CrossRef]
  10. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Netw. 2010, 54, 2787–2805. [CrossRef]
  11. Verma, A.; Prakash, S.; Srivastava, V.; Kumar, A.; Mukhopadhyay, S.C. Sensing, Controlling, and IoT Infrastructure in Smart Building: A Review. IEEE Sens. J. 2019, 19, 9036–9046. [CrossRef]
  12. Saha, H.; Florita, A.R.; Henze, G.P.; Sarkar, S. Occupancy sensing in buildings: A review of data analytics approaches. Energy Build. 2019, 188–189, 278–285. [CrossRef]
  13. Qolomany, B.; Al-Fuqaha, A.; Gupta, A.; Benhaddou, D.; Alwajidi, S.; Qadir, J.; Fong, A.C. Leveraging machine learning and big data for smart buildings: A comprehensive survey. IEEE Access 2019, 7, 90316–90356. [CrossRef]
  14. Atzori, L.; Iera, A.; Morabito, G. SIoT: Giving a Social Structure to the Internet of Things. IEEE Commun. Lett. 2011, 15, 1193–1195. [CrossRef]
  15. Choubey, P.K.; Pateria, S.; Saxena, A.; SB, V.P.C.; Jha, K.K.; PM, S.B. Power efficient, bandwidth optimized and fault tolerant sensor management for IOT in Smart Home. In Proceedings of the 2015 IEEE International Advance Computing Conference (IACC), Banglore, India, 12–13 June 2015; IEEE: New York, NY, USA, 2015; pp. 366–370.
  16. Lilis, G.; Conus, G.; Asadi, N.; Kayal, M. Towards the next generation of intelligent building: An assessment study of current automation and future IoT based systems with a proposal for transitional design. Cities Soc. 2017, 28, 473–481. [CrossRef]
  17. Moreno, M.V.; Dufour, L.; Skarmeta, A.F.; Jara, A.J.; Genoud, D.; Ladevie, B.; Bezian, J.J. Big data: The key to energy efficiency in smart buildings. Soft Comput. 2016, 20, 1749–1762. [CrossRef]
  18. Moreno, V.; Zamora, M.A.; Skarmeta, A.F. A low-cost indoor localization system for energy sustainability in smart buildings. IEEE Sens. J. 2016, 16, 3246–3262. [CrossRef]
  19. Indigo Domotics. Available online: https://www.indigodomo.com (accessed on 1 April 2021).
  20. SmartThings Platform. Available online: https://www.smartthings.com/ (accessed on 1 April 2021).
  21. Dixon, C.; Mahajan, R.; Agarwal, S.; Brush, A.; Lee, B.; Saroiu, S.; Bahl, P. An operating system for the home. In Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), San Jose, CA, USA, 25–27 April 2012; pp. 337–352.
  22. Brush, A.B.; Filippov, E.; Huang, D.; Jung, J.; Mahajan, R.; Martinez, F.; Mazhar, K.; Phanishayee, A.; Samuel, A.; Scott, J.; et al. Lab of things: A platform for conducting studies with connected devices in multiple homes. In Proceedings of the 2013 ACM conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; pp. 35–38.
  23. OpenHab Platform. Available online: https://www.openhab.org/ (accessed on 1 April 2021).
  24. Smirek, L.; Zimmermann, G.; Ziegler, D. Towards Universally Usable Smart Homes – How Can MyUI, URC and openHAB Contribute to an Adaptive User Interface Platform? In Proceedings of the 7th International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies, and Services, Nice, France, 12–16 October 2014; pp. 29–38.
  25. Smirek, L.; Zimmermann, G.; Beigl, M. Just a smart home or your smart home—A framework for personalized user interfaces based on eclipse smart home and universal remote console. Procedia Comput. Sci. 2016, 98, 107–116. [CrossRef]
  26. Fleury, A.; Noury, N.; Vacher, M. Introducing knowledge in the process of supervised classification of activities of Daily Living in Health Smart Homes. In Proceedings of the 12th IEEE International Conference on e-Health Networking, Applications and Services, Lyon, France, 1–3 July 2010; IEEE: New York, NY, USA, 2010; pp. 322–329.
  27. Belaidouni, S.; Miraoui, M. Machine learning technologies in smart spaces. In Proceedings of the 10th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Venice, Italy, 9–13 October 2016; pp. 52–55.
  28. Altun, K.; Barshan, B.; Tunçel, O. Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognit. 2010, 43, 3605–3620. [CrossRef]
  29. Delgado, M.; Ros, M.; Vila, M.A. Correct behavior identification system in a tagged world. Expert Syst. Appl. 2009, 36, 9899–9906. [CrossRef]
  30. Parnandi, A.; Le, K.; Vaghela, P.; Kolli, A.; Dantu, K.; Poduri, S.; Sukhatme, G.S. Coarse in-building localization with smartphones. In International Conference on Mobile Computing, Applications, and Services; Springer: Berlin, Germany, 2009; pp. 343–354.
  31. Atzori, L.; Iera, A.; Morabito, G.; Nitti, M. The Social Internet of Things (SIoT)—When social networks meet the Internet of Things: Concept, architecture and network characterization. Netw. 2012, 56, 3594–3608. [CrossRef]
  32. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
  33. Boyuan, W.; Muqing, W. Study on Pedestrian Detection Based on an Improved YOLOv4 Algorithm. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 1198–1202. [CrossRef]
  34. Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Public Health 2020, 8. [CrossRef] [PubMed]