| ماهنامه| ISC | فنی،مدیریتی،حقوقی| اعتبار،چابکی،پاسخگویی|

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری مهندسی محیط زیست- آب و فاضلاب، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران

2 مرکز تحقیقات سم شناسی، دانشگاه علوم‌پزشکی جندی شاپور اهواز، اهواز، ایران

چکیده

زمینه و هدف: شور کردن آب شیرین در جهان در طی فعالیت های شهری و صنعتی انسان ساخت رخ می دهد. این فعالیت ها، از برداشت آب زیرزمینی برای مصارف شرب در مناطق ساحلی تا سطحی که آب دریا بر آب شیرین غلبه کند تا فرآیندهای سختی زدایی در مصارف صنعتی، برای جلوگیری از آسیب رسیدن به تاسیسات، را شامل می شوند. روش بررسی: در این تحقیق با استفاده از مطالعه کتاب های مرجع و همچنین جستجوی اینترنتی، با موتور جستسجوی google، در پایگاه های اطلاعاتیspringer, science direct, online library wiley, iwap online و... مقالاتی که در ارتباط با تصفیه بیولوژیکی فاضلاب های شور بود، بررسی گردید. یافته ها: نتایج نشان می دهد که عملکرد متابولیسم باکتریایی، علاوه بر عوامل دیگر، بستگی به فشار اسمزی محیطی دارد که این خود ارتباط نزدیکی با غلظت نمک در مایع معدنی دارد. غلظت بالای نمک دارای اثرات مستقیم و غیر مستقیم بر فعالیت باکتری ها بوده و این خود بر ظرفیت استفاده از فرآیندهای بیوژیکی در فاضلاب های شور تاثیر بسزایی خواهد گذاشت. استفاده از باکتری های شوردست نتایج خوبی داشته است. حذف فسسفر و اکسیداسیون نیتروژن نسبت به حذف مواد آلی در این نوع فاضلاب ها از حساسیت بیشتری برخوردار است. نتیجه گیری: در کل با توجه به مطالعات انجام شده استفاده از فرآیند توام بی هوازی – هوازی می تواند در تصفیه اینگونه فاضلاب ها راندمان بالاتری را ایجاد نماید مشروط بر اینکه در صورت افزایش میزان نمک به بیش از 12% باکتری های شوردوست به سیستم اضافه شود.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Effect of Salinity on Biological Wastewater Treatment (A Review Study)

نویسندگان [English]

  • Naeim Banisaeid 1
  • Nematollah Jafarzadeh Haghighi Fard 2

1 PhD Student in Environmental Engineering - Water & Wastewater, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran

2 Toxicology Research Center, Ahvaz Medical Science Jondyshapur University, Ahvaz, Iran.

چکیده [English]

Background and Objective: Freshwater salinization in the world occurs during man-made urban and industrial activities. These activities range from groundwater abstraction for drinking water in coastal areas to the level at which seawater overflows with fresh water to de-hardening processes in industrial use to prevent damage to facilities. Materials and Methods: In this research, using the study of reference books as well as internet search, with google search engine, in databases of springer, science direct, online library wiley, iwap online, etc., articles related to biological treatment of saline wastewater, checked. Results: The results show that the performance of bacterial metabolism, among other factors, depends on the ambient osmotic pressure, which is closely related to the concentration of salt in the mineral liquid. High salt concentration has direct and indirect effects on bacterial activity and this will have a significant impact on the capacity to use biological processes in saline wastewater put. Conclusion: The best way to treat this type of wastewater is to use halophilic bacteria that are less sensitive to salt additions. Phosphorus removal and nitrogen oxidation are more sensitive to the removal of organic matter in these wastewaters. In general, according to studies, the use of combined anaerobic-aerobic process can create a higher efficiency in the treatment of such wastewater, provided that if the amount of salt is added to more than 12% of halophilic bacteria is added to the system.

کلیدواژه‌ها [English]

  • Treatment method
  • Saline wastewater
  • Biological treatment
  • Salinity effect
[1]        Á. Val del Río, J. L. Campos Gómez, and A. M. Corral, "Treatment and Valorisation of Saline Wastewater: Principles and Practice," ed: IWA Publishing, 2021.
[2]        W. C. L. Lay, Y. Liu, and A. G. Fane, "Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review," Water Research, vol. 44, no. 1, pp. 21-40, 2010/01/01/ 2010, doi: https://doi.org/10.1016/j.watres.2009.09.026.
[3]        A. Mosquera-Corral, F. Gonzalez, J. Campos, and R. Méndez, "Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds," Process Biochemistry, vol. 40, no. 9, pp. 3109-3118, 2005.
[4]        C. Cortés-Lorenzo, M. Rodríguez-Díaz, C. López-Lopez, M. Sánchez-Peinado, B. Rodelas, and J. González-López, "Effect of salinity on enzymatic activities in a submerged fixed bed biofilm reactor for municipal sewage treatment," Bioresource Technology, vol. 121, pp. 312-319, 2012/10/01/ 2012, doi: https://doi.org/10.1016/j.biortech.2012.06.083.
[5]        E. Ferrer-Polonio, J. A. Mendoza-Roca, A. Iborra-Clar, J. L. Alonso-Molina, and L. Pastor-Alcañiz, "Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry," Chemical Engineering Journal, vol. 273, pp. 595-602, 2015/08/01/ 2015, doi: https://doi.org/10.1016/j.cej.2015.03.062.
[6]        Y. Chen, J. J. Cheng, and K. S. Creamer, "Inhibition of anaerobic digestion process: A review," Bioresource Technology, vol. 99, no. 10, pp. 4044-4064, 2008/07/01/ 2008, doi: https://doi.org/10.1016/j.biortech.2007.01.057.
[7]        A. Dapena-Mora, J. R. Vázquez-Padín, J. L. Campos, A. Mosquera-Corral, M. S. M. Jetten, and R. Méndez, "Monitoring the stability of an Anammox reactor under high salinity conditions," Biochemical Engineering Journal, vol. 51, no. 3, pp. 167-171, 2010/09/15/ 2010, doi: https://doi.org/10.1016/j.bej.2010.06.014.
[8]        M. M. Amin, M. H. Khiadani, A. Fatehizadeh, and E. Taheri, "Validation of linear and non-linear kinetic modeling of saline wastewater treatment by sequencing batch reactor with adapted and non-adapted consortiums," Desalination, vol. 344, pp. 228-235, 2014/07/01/ 2014, doi: https://doi.org/10.1016/j.desal.2014.03.032.
[9]        J. P. Bassin, M. Pronk, G. Muyzer, R. Kleerebezem, M. Dezotti, and M. C. M. van Loosdrecht, "Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure," Applied and Environmental Microbiology, vol. 77, no. 22, pp. 7942-7953, 2011/11/15 2011, doi: 10.1128/AEM.05016-11.
[10]      J. E. Burgess and B. I. Pletschke, "Hydrolytic enzymes in sewage sludge treatment: a mini-review," Water Sa, vol. 34, no. 3, pp. 343-350, 2008.
[11]      M. J. Sharrer, Y. Tal, D. Ferrier, J. A. Hankins, and S. T. Summerfelt, "Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system," Aquacultural Engineering, vol. 36, no. 2, pp. 159-176, 2007/03/01/ 2007, doi: https://doi.org/10.1016/j.aquaeng.2006.10.003.
[12]      F. Kargi and A. Uygur, "Improved nutrient removal from saline wastewater in an SBR by Halobacter supplemented activated sludge," Environmental engineering science, vol. 22, no. 2, pp. 170-176, 2005.
[13]      H. G. Trüper and E. A. Galinski, "Biosynthesis and fate of compatible solutes in extremely halophilic phototrophic eubacteria," FEMS Microbiology Reviews, vol. 6, no. 2-3, pp. 247-254, 1990, doi: 10.1111/j.1574-6968.1990.tb04098.x.
[14]      D. J. Steele, D. J. Franklin, and G. J. C. Underwood, "Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms," Biofouling, vol. 30, no. 8, pp. 987-998, 2014/09/14 2014, doi: 10.1080/08927014.2014.960859.
[15]      H. Lu et al., "A holistic analysis of ANAMMOX process in response to salinity: From adaptation to collapse," Separation and Purification Technology, vol. 215, pp. 342-350, 2019/05/15/ 2019, doi: https://doi.org/10.1016/j.seppur.2019.01.016.
[16]      P. Fang et al., "Impact of sodium ion on multivalent metal ion content in extracellular polymeric substances of granular sludge from an expanded granular sludge bed," Environmental technology, vol. 40, no. 23, pp. 3105-3113, 2019.
[17]      P. L. McCarty and R. E. McKinney, "Salt Toxicity in Anaerobic Digestion," Journal (Water Pollution Control Federation), vol. 33, no. 4, pp. 399-415, 1961. [Online]. Available: http://www.jstor.org/stable/25034396.
[18]      G. Mazor, G. J. Kidron, A. Vonshak, and A. Abeliovich, "The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts," FEMS Microbiology Ecology, vol. 21, no. 2, pp. 121-130, 1996, doi: 10.1111/j.1574-6941.1996.tb00339.x.
[19]      X. Tan, I. Acquah, H. Liu, W. Li, and S. Tan, "A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective," Chemosphere, vol. 220, pp. 1150-1162, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.chemosphere.2019.01.027.
[20]      E. Taheri, M. Hajian nejad, M. M. Amin, H. Farrokhzadeh, M. Hatamzadeh, and M. Vahid Dastjerdi, "Aerobic Granulation in Sequencing Batch Reactor (SBR)  Treating Saline Wastewater," ijhe, vol. 5, no. 1, pp. 29-40, 2012. [Online]. Available: http://ijhe.tums.ac.ir/article-1-36-fa.html.
[21]      S. Pillai and R. Rajagopalan, "Influence of sea water on protozoal activity and purification of sewage by the activated sludge process," Current Science, vol. 17, no. 11, pp. 329-329, 1948.
[22]      O. Lefebvre and R. Moletta, "Treatment of organic pollution in industrial saline wastewater: A literature review," Water Research, vol. 40, no. 20, pp. 3671-3682, 2006/12/01/ 2006, doi: https://doi.org/10.1016/j.watres.2006.08.027.
[23]      A. R. Dinçer and F. Kargi, "Performance of rotating biological disc system treating saline wastewater," Process Biochemistry, vol. 36, no. 8, pp. 901-906, 2001/03/01/ 2001, doi: https://doi.org/10.1016/S0032-9592(00)00287-9.
]24[      م. برقعی, ا. حسنی, ن. امانی, and ا. جاوید, "مدل ریاضی رآکتور بیوفیلمی با بستر متحرک ( MBBR ) در تصفیه فاضلاب های شور," (in fa), فصلنامه علوم و تکنولوژی محیط زیست, vol. 7, no. 4, pp. 2-15, 2006.
]25[      جوادی. خدیجه، بیتا آیتی، حسین گنجی دوست،, "مقایسه دو سیستم MBBR و SBR در تصفیه فاضلابهای شور," پایان نامه کارشناسی ارشد, دانشگاه تربیت مدرس, وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس, تهران, 1388.
[26]      O. Lefebvre, N. Vasudevan, M. Torrijos, K. Thanasekaran, and R. Moletta, "Halophilic biological treatment of tannery soak liquor in a sequencing batch reactor," Water Research, vol. 39, no. 8, pp. 1471-1480, 2005/04/01/ 2005, doi: https://doi.org/10.1016/j.watres.2004.12.038.
]27[      ن. سلمانی خاص, م. تیزقدم, ع. رشیدی مهرآبادی, "ارزیابی فرایند نیتریفیکاسیون درتصفیه فاضلابهای شور توسط راکتور هیبریدی و مقایسه آن با لجن فعال متداول," (in fa), محیط شناسی
, vol. 42, no. 1, pp. 169-175, 2016, doi: 10.22059/jes.2016.58113.
[28]      V. Alipour, F. Moein, and L. Rezaei, "Determining the salt tolerance threshold for biological treatment of salty wastewater," Health Scope, vol. 6, no. 1, 2017.
[29]      P. Artiga, G. García-Toriello, R. Méndez, and J. M. Garrido, "Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory," Desalination, vol. 221, no. 1, pp. 518-525, 2008/03/01/ 2008, doi: https://doi.org/10.1016/j.desal.2007.01.112.
[30]      R.-S. Juang, W.-C. Huang, and Y.-H. Hsu, "Treatment of phenol in synthetic saline wastewater by solvent extraction and two-phase membrane biodegradation," Journal of Hazardous Materials, vol. 164, no. 1, pp. 46-52, 2009/05/15/ 2009, doi: https://doi.org/10.1016/j.jhazmat.2008.07.116.
[31]      M. Kubo, J. Hiroe, M. Murakami, H. Fukami, and T. Tachiki, "Treament of hypersaline-containing wastewater with salt- tolerant microorganisms," Journal of Bioscience and Bioengineering, vol. 91, no. 2, pp. 222-224, 2001/01/01/ 2001, doi: https://doi.org/10.1016/S1389-1723(01)80070-0.
[32]      F. Aloui, S. Khoufi, S. Loukil, and S. Sayadi, "Performances of an activated sludge process for the treatment of fish processing saline wastewater," Desalination, vol. 246, no. 1, pp. 389-396, 2009/09/30/ 2009, doi: https://doi.org/10.1016/j.desal.2008.03.062.
[33]      F. Kargi and A. R. Dincer, "Biological treatment of saline wastewater by fed‐batch operation," Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, vol. 69, no. 2, pp. 167-172, 1997.
[34]      Y. Ng How, L. Ong Say, and J. Ng Wun, "Effects of Sodium Chloride on the Performance of a Sequencing Batch Reactor," Journal of Environmental Engineering, vol. 131, no. 11, pp. 1557-1564, 2005/11/01 2005, doi: 10.1061/(ASCE)0733-9372(2005)131:11(1557).
[35]      S. I. Abou-Elela, M. M. Kamel, and M. E. Fawzy, "Biological treatment of saline wastewater using a salt-tolerant microorganism," Desalination, vol. 250, no. 1, pp. 1-5, 2010/01/01/ 2010, doi: https://doi.org/10.1016/j.desal.2009.03.022.
[36]      W. Eckenfelder, V. J. Boero, and T. H. Flippin, "THE EFFECT OF HIGH TDS ON THE ACTIVATED SLUDGE PROCESS," Proceedings of the Water Environment Federation, vol. 2001, no. 5, pp. 153-161, 2001.
[37]      A. B. Deorsola, G. C. Camarinha, D. D. Carvalho, and G. L. Sant'Anna Jr, "Biological treatment of saline wastewaters in an aerobic sequencing batch reactor," Environmental Progress & Sustainable Energy, vol. 32, no. 2, pp. 198-205, 2013.
[38]      J. Peng, K. Kumar, M. Gross, T. Kunetz, and Z. Wen, "Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor," Water Environment Research, vol. 92, no. 5, pp. 766-778, 2020.
[39]      V. Simankova and G. Zavarzin, "Anaerobic decomposition of cellulose in Lake Sivash and hypersaline lagoons of Arabat Spit," Microbiology, vol. 61, no. 2, pp. 193-197, 1992.
[40]      E. Aspé, M. C. Marti, and M. Roeckel, "Anaerobic treatment of fishery wastewater using a marine sediment inoculum," Water Research, vol. 31, no. 9, pp. 2147-2160, 1997/09/01/ 1997, doi: https://doi.org/10.1016/S0043-1354(97)00051-1.
[41]      N. Rovirosa, E. Sánchez, M. Cruz, M. C. Veiga, and R. Borja, "Coliform concentration reduction and related performance evaluation of a down-flow anaerobic fixed bed reactor treating low-strength saline wastewater," Bioresource Technology, vol. 94, no. 2, pp. 119-127, 2004/09/01/ 2004, doi: https://doi.org/10.1016/j.biortech.2003.12.010.
[42]      O. Lefebvre, N. Vasudevan, M. Torrijos, K. Thanasekaran, and R. Moletta, "Anaerobic digestion of tannery soak liquor with an aerobic post-treatment," Water Research, vol. 40, no. 7, pp. 1492-1500, 2006/04/01/ 2006, doi: https://doi.org/10.1016/j.watres.2006.02.004.
[43]      A. Mottet, F. Habouzit, and J. P. Steyer, "Anaerobic digestion of marine microalgae in different salinity levels," Bioresource Technology, vol. 158, pp. 300-306, 2014/04/01/ 2014, doi: https://doi.org/10.1016/j.biortech.2014.02.055.
[44]      J. Zhao et al., "Potential impact of salinity on methane production from food waste anaerobic digestion," Waste Management, vol. 67, pp. 308-314, 2017/09/01/ 2017, doi: https://doi.org/10.1016/j.wasman.2017.05.016.
[45]      J. De Vrieze et al., "Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion," Biotechnology for Biofuels, vol. 9, no. 1, p. 244, 2016/11/09 2016, doi: 10.1186/s13068-016-0652-5.
[46]      A. Rinzema, J. van Lier, and G. Lettinga, "Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor," Enzyme and Microbial Technology, vol. 10, no. 1, pp. 24-32, 1988/01/01/ 1988, doi: https://doi.org/10.1016/0141-0229(88)90094-4.
[47]      A. Uygur and F. Kargı, "Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor," Enzyme and Microbial Technology, vol. 34, no. 3, pp. 313-318, 2004/03/01/ 2004, doi: https://doi.org/10.1016/j.enzmictec.2003.11.010.
[48]      T. Panswad and C. Anan, "Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds," Water Research, vol. 33, no. 5, pp. 1165-1172, 1999/04/01/ 1999, doi: https://doi.org/10.1016/S0043-1354(98)00314-5.