| ماهنامه| ISC | فنی،مدیریتی،حقوقی| اعتبار،چابکی،پاسخگویی|

نوع مقاله : مقاله مروری

نویسندگان

1 مربی، دانشگاه هنر و معماری پارس، تهران، ایران

2 دانشجوی کارشناسی، دانشگاه فنی و حرفه ای انقلاب اسلامی، تهران، ایران

چکیده

گسترش جمعیت ساکنین کره زمین و نیاز به صنعت ساخت و ساز موجب کمبود مصالح اولیه شده است. از طرف دیگر پروسه ساخت و استفاده از این مصالح باعث آسیب های زیان آوری به محیط زیست میشود که سبب آلودگی منابع طبیعی و رها شدن کربن دی اکسید در طبیعت میگردد. افزون بر این موضوع، از موارد پرمصرف دیگر که سبب آلودگی محیط زیست میشود و فرآیند بازیافت پسماند آنها پرهزینه و زمان بر است، پلیمرهای پلاستیکی و مصرفی در صنایع گوناگون میباشند. یکی از پرکاربردترین پلیمرها، پلی وینیل کلراید (Pvc) است که در صنعت ساخت سیم ها، کابل های برق و انواع شارژرهای تلفن همراه به عنوان روکش و پوششی برای هادی آنها استفاده میشود. مطالعات محدودی در حوزه استفاده مجدد از این پلیمر به عنوان عضوی از ساختار بتن به عنوان الیاف و بهبود خواص مکانیکی آن در گذشته صورت گرفته است. این مطالعه با مروری جامع بر این مطالعات در زمینه بکارگیری این نوع الیاف که به عنوان مسلح کننده و تقویت کننده خواص بتن استفاده کرده اند، میپردازد و به بررسی دقیقی بر تاثیر درصدهای مختلف و ابعاد متنوع از این نوع الیاف بر مشخصات مکانیکی بتن توجه دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Mechanical Properties of Concrete Reinforced with Polyvinyl Chloride (Pvc) Fibers Made of Wire Sheath

نویسندگان [English]

  • Mehrdad Abdi Moghadam 1
  • Amirreza Abbasi Oshaghi 2

1 Lecturer, Department of Civil Engineering, Faculty of Engineering, Pars University, Tehran, Iran

2 B.Sc. Student, Civil Department, Technical and vocational University (TVU), Tehran, Iran

چکیده [English]

The expansion of the planet's population and the need for the construction industry has caused a shortage of primary materials. On the other hand, the process of making and using these materials causes harmful damage to the environment and causes the pollution of natural resources and the release of carbon dioxide (CO2) in nature. In addition to this, plastic polymers used in various industries are one of the most consumed items that cause environmental pollution and the waste recycling process is costly and time-consuming. One of the most widely used polymers is polyvinyl chloride (PVC), which is used in the industry of making wires, electric cables, and all kinds of mobile phone chargers as a cover for their conductors.Limited studies have been done in the field of reusing this polymer as a member of the concrete structure as fibres and improving its mechanical properties in the past. This study deals with a comprehensive review of these studies in the field of using these types of fibres that have been used as reinforcing and reinforcing properties of concrete and focuses on a detailed investigation of the effect of different percentages and various dimensions of these types of fibres on the mechanical characteristics of concrete.

کلیدواژه‌ها [English]

  • Polyvinyl chloride fibers
  • Environment
  • Concrete slump
  • Compressive strength
  • Tensile strength
Abd, A., Aal, E., Abdullah, G. M. S., Qadri, S. M. T., & Abotalib, A. Z. (2022). Advances on concrete strength properties after adding polypropylene fibers from health personal protective equipment ( PPE ) of COVID-19 : Implication on waste management and sustainable environment. Physics and Chemistry of the Earth, 128(September), 103260. https://doi.org/10.1016/j.pce.2022.103260
Abdi Moghadam, M., & Izadifard, R. A. (2020). Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures. Fire Safety Journal, 113. https://doi.org/10.1016/j.firesaf.2020.102978
Abdi Moghadam, M., & Izadifard, R. A. (2021). Prediction of the Tensile Strength of Normal and Steel Fiber Reinforced Concrete Exposed to High Temperatures. International Journal of Concrete Structures and Materials, 15(1), 1–16.
Abdi Moghadam, M., Izadifard, R. A., & Khalighi, A. (2022). Microstructural and Mechanical Characteristics of Fiber-Reinforced Cementitious Composites under High-Temperature Exposure. Journal of Materials in Civil Engineering, 34(9), 4022208.
Adnan, H. M., & Dawood, A. O. (2020). Case Studies in Construction Materials Strength behavior of reinforced concrete beam using re-cycle of PET wastes as synthetic fi bers. Case Studies in Construction Materials, 13, e00367. https://doi.org/10.1016/j.cscm.2020.e00367
Aghajanian, A., Cimentada, A., Behfarnia, K., Brand, A. S., & Thomas, C. (2023). Microstructural analysis of siderurgical aggregate concrete reinforced with fibers. Journal of Building Engineering, 64(June 2022), 105543. https://doi.org/10.1016/j.jobe.2022.105543
Aghajanian, A., Thomas, C., & Sainz-Aja, J. (2022). 8 - The use of rice husk ash in eco-concrete. In P. O. Awoyera, C. Thomas, & M. S. B. T.-T. S. I. of R. A. C. P. with F. and P. Kirgiz (Eds.), Woodhead Publishing Series in Civil and Structural Engineering (pp. 171–197). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-824105-9.00006-8
Ahmad, M., Fahad, M., Ali, B., Hechmi, M., Ouni, E., & Babeker, A. (2022). Case Studies in Construction Materials Influence of nylon fibers recycled from the scrap brushes on the properties of concrete : Valorization of plastic waste in concrete. Case Studies in Construction Materials, 16(April), e01089. https://doi.org/10.1016/j.cscm.2022.e01089
Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A., & Sherwani, A. F. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769. https://doi.org/https://doi.org/10.1016/j.compositesb.2021.108769
Ameri, F., Brito, J. De, Madhkhan, M., & Taheri, R. A. (2020). Steel fibre-reinforced high-strength concrete incorporating copper slag: Mechanical, gamma-ray shielding, impact resistance, and microstructural characteristics. Journal of Building Engineering, 101118. https://doi.org/10.1016/j.jobe.2019.101118
Amin, M., & Tayeh, B. A. (2020). Case Studies in Construction Materials Investigating the mechanical and microstructure properties of fi bre-reinforced lightweight concrete under elevated temperatures. Case Studies in Construction Materials, 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459
Aocharoen, Y., & Chotickai, P. (2023). Compressive mechanical and durability properties of concrete with polyethylene terephthalate and high-density polyethylene aggregates. Cleaner Engineering and Technology, 12(October 2022), 100600. https://doi.org/10.1016/j.clet.2023.100600
ASKAR, M., ABDUKA, K., & ASKAR, L. (2020). Seismic vulnerability assessment of reinforced concrete structures in kurdistan region-iraq. 32(2), 116–130.
Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, 113, 157–175. https://doi.org/10.1016/j.wasman.2020.05.048
Bashar, A., Manzur, T., & Yazdani, N. (2016). Improving performance of light weight concrete with brick chips using low cost steel wire fiber. Construction and Building Materials, 106, 575–583. https://doi.org/10.1016/j.conbuildmat.2015.12.165
Chen, Y., He, Q., Liang, X., Jiang, R., & Li, H. (2022). Experimental investigation on mechanical properties of glass fiber reinforced recycled aggregate concrete under uniaxial cyclic compression. Cleaner Materials, 6(August), 100164. https://doi.org/10.1016/j.clema.2022.100164
Corominas, L., Byrne, D., Guest, J. S., Hospido, A., Roux, P., Shaw, A., & Short, M. D. (2020). The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Research, 116058. https://doi.org/10.1016/j.watres.2020.116058
Design, C., Kumar, C., Stief, P., Dantan, J., Etienne, A., & Siadat, A. (2021). ScienceDirect ScienceDirect Influence of mechanical properties and CO 2 emissions on the optimization Influence mechanical properties on concrete the optimization 2 emissions of of based hybrid fiber reinforced of self-compacting based hybrid fiber reinforced concrete to Mahapatra and architecture of products for an assembly oriented product family identification. Procedia CIRP, 98, 145–150. https://doi.org/10.1016/j.procir.2021.01.020
Elsayed, M., Abd-allah, S. R., Said, M., & El-azim, A. A. (2023). Case Studies in Construction Materials Structural performance of recycled coarse aggregate concrete beams containing waste glass powder and waste aluminum fibers. Case Studies in Construction Materials, 18(August 2022), e01751. https://doi.org/10.1016/j.cscm.2022.e01751
F.Pacheco-Torgal. (2019). Introduction to the use of recycled plastics in eco-ef fi cient concrete. 1–8. https://doi.org/10.1016/B978-0-08-102676-2.00001-3
F S Khalid, S H Saaidin, S Shahidan, N. H. O. and N. A. A. G. (2020). Strength of Concrete Containing Synthetic Wire Waste as Fiber Materials Strength of Concrete Containing Synthetic Wire Waste as. https://doi.org/10.1088/1757-899X/713/1/012003
Garg, R., & Garg, R. (2020). Materials Today : Proceedings Performance evaluation of polypropylene fiber waste reinforced concrete in presence of silica fume. Materials Today: Proceedings, xxxx, 6–13. https://doi.org/10.1016/j.matpr.2020.06.482
Hussain, I., Ali, B., Akhtar, T., & Sohail, M. (2020). Case Studies in Construction Materials Comparison of mechanical properties of concrete and design thickness of pavement with different types of. Case Studies in Construction Materials, 13, e00429. https://doi.org/10.1016/j.cscm.2020.e00429
Ibrahim, A., Yaseen, M., Galobardes, I., Mushtaq, J., & Fahad, S. (2022). Producing sustainable concrete with plastic waste : A review. Environmental Challenges, 9(October), 100626. https://doi.org/10.1016/j.envc.2022.100626
Issa, Y., Aisheh, A., Sulaiman, D., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Case Studies in Construction Materials Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. Case Studies in Construction Materials, 17(April), e01234. https://doi.org/10.1016/j.cscm.2022.e01234
Izadifard, Ramezanali; Abdimoghadam, M. (n.d.). Evaluation of various content of zeolite on the mechanical and durability properties of concrete at high temperatures.
Izadifard, R. A., & abdi moghadam, M. (2021). Evaluation of various content of steel fibers on improving the mechanical and durability properties of concrete at high temperatures. Journal of Structural and Construction Engineering, 8(2), 159–176. https://doi.org/10.22065/jsce.2019.166490.1757
Jang, Y., Lee, G., Kwon, Y., Lim, J., & Jeong, J. (2020). Resources , Conservation & Recycling Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resources, Conservation & Recycling, 158(February), 104798. https://doi.org/10.1016/j.resconrec.2020.104798
Joshi, S., & Bhattarai, N. (2019). Experimental Study On The Properties Of Concrete With Partial Replacement Of Sand By Plastic Pet Bottle Fiber. 11, 27–31.
Justyna Tomaszewska. (2020). Polish Transition towards Circular Economy : Materials Management and Implications for the. 2011.
Kamal, M., Askar, L. K., Al-kamaki, Y. S. S., & Ferhadi, R. (2023). Heliyon Effects of chopped CFRP fiber on mechanical properties of concrete. Heliyon, 9(3), e13832. https://doi.org/10.1016/j.heliyon.2023.e13832
Kh, T., & Ali, M. (2020). Shear strength of a reinforced concrete beam by PET fiber. Environment, Development and Sustainability, December 2019. https://doi.org/10.1007/s10668-020-00974-w
Khalid, F. S., Irwan, J. M., Ibrahim, M. H. W., Othman, N., & Shahidan, S. (2018). Splitting tensile and pullout behavior of synthetic wastes as fiber-reinforced concrete. Construction and Building Materials, 171, 54–64. https://doi.org/10.1016/j.conbuildmat.2018.03.122
Kumar, M. A., Balaji, S., Selvapraveen, S., & Kulanthaivel, P. (2022). Laboratory study on mechanical properties of self compacting concrete using marble waste and polypropylene fiber. Cleaner Materials, 6(April), 100156. https://doi.org/10.1016/j.clema.2022.100156
Kurup, A. R., Kumar, K. S., & Ph, D. (2015). Novel Fibrous Concrete Mixture Made from Recycled PVC Fibers from Electronic Waste. 1–7. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000338.
Lebreton, L., & Andrady, A. (2019). and disposal. Palgrave Communications, 1–11. https://doi.org/10.1057/s41599-018-0212-7
Manjunatha, M., Preethi, S., Mounika, H. G., & Niveditha, K. N. (2021). Materials Today : Proceedings Life cycle assessment ( LCA ) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.01.248
Martins, J. V., Teresa, M., Aguilar, P., Cristina, D., Garcia, S., & Jos, W. (2022). Management and characterization of concrete wastes from concrete batching plants in Belo Horizonte e Brazil. https://doi.org/10.1016/j.jmrt.2022.07.136
Md. Habibur Rahman Sobuz , Ayan Saha , Jannatul Ferdous Anamika , Moustafa Houda , Marc Azab, A. S. M. A. and M. J. R. (2022). Development of Self-Compacting Concrete Incorporating Rice.
Meza, A., Pujadas, P., & Pardo-bosch, F. (2021). Mechanical Optimization of Concrete with Recycled PET Fibres Based on a Statistical-Experimental Study.
Moghadam, M. A., & Izadifard, R. A. (2020). Effects of zeolite and silica fume substitution on the microstructure and mechanical properties of mortar at high temperatures. Construction and Building Materials, 119206.
Mohammed, A. A., & Mohammed, I. I. (2021). Effect of Fiber Parameters on the Strength Properties of Concrete Reinforced with PET Waste Fibers. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 0123456789. https://doi.org/10.1007/s40996-021-00663-2
Mohammed, A. A., & Rahim, A. A. F. (2020). Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Construction and Building Materials, 244, 118350. https://doi.org/10.1016/j.conbuildmat.2020.118350
Mohammed, B. H., Far, A., Sherwani, H., Faraj, R. H., Qadir, H. H., & Younis, K. H. (2021). Mechanical properties and ductility behavior of ultra-high performance fiber reinforced concretes : Effect of low water-to-binder ratios and micro glass fibers. Ain Shams Engineering Journal, 12(2), 1557–1567. https://doi.org/10.1016/j.asej.2020.11.008
Mousavimehr, M., & Nematzadeh, M. (2020). Post-heating flexural behavior and durability of hybrid PET – Rubber aggregate concrete. Construction and Building Materials, 265, 120359. https://doi.org/10.1016/j.conbuildmat.2020.120359
Naser, M. H., Naser, F. H., & Dhahir, M. K. (2020). Tensile behavior of fiber reinforced cement mortar using wastes of electrical connections wires and galvanized binding wires. Construction and Building Materials, 264, 120244. https://doi.org/10.1016/j.conbuildmat.2020.120244
Nasr, MS, Shubbar, AAF, Abed, ZA-AR and Ibrahim, M. (2020). LJMU Research Online.
Nikbin, I. M., & Ahmadi, H. (2020). Fracture behaviour of concrete containing waste tire and waste polyethylene terephthalate : An sustainable fracture design. Construction and Building Materials, 261, 119960. https://doi.org/10.1016/j.conbuildmat.2020.119960
Nkomo, N. Z., Masu, L. M., & Nziu, P. K. (2022). Case Studies in Construction Materials Optimisation of mechanical properties of polyethylene terephthalate fibre / fly ash hybrid concrete composite. Case Studies in Construction Materials, 17(August), e01395. https://doi.org/10.1016/j.cscm.2022.e01395
Nygaard, F. (2020). Aalborg Universitet Low-carbon design strategies for new residential buildings Lessons from architectural practice Low carbon design strategies for new residential buildings - lessons from architectural practice Freja Nygaard Rasmussen a *, ORCID 0000-0002-9168-2021 Morten Birkved b , ORCID 0000-0001-6989-1647 Harpa Birgisdóttir a , ORCID 0000-0001-7642-4107.
Olo, O., Morawo, A., & Okedairo, O. (2021). Case Studies in Construction Materials Solid waste management in developing countries : Reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production. 14. https://doi.org/10.1016/j.cscm.2021.e00532
Olofinnade, O., Chandra, S., & Chakraborty, P. (2020). Materials Today : Proceedings Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.05.176
Orouji, M., & Najaf, E. (2023). Case Studies in Construction Materials Effect of GFRP rebars and polypropylene fibers on flexural strength in high-performance concrete beams with glass powder and microsilica. Case Studies in Construction Materials, 18(December 2022), e01769. https://doi.org/10.1016/j.cscm.2022.e01769
Qassem, A., Ali, M., Ghaleb, A. A. A., Abadel, A. A., Alghamdi, H., Alamri, M., & Wasim, M. (2022). Case Studies in Construction Materials Mechanical performance and feasibility analysis of green concrete prepared with local natural zeolite and waste PET plastic fibers as cement replacements. Case Studies in Construction Materials, 17(May), e01256. https://doi.org/10.1016/j.cscm.2022.e01256
Rasheed, L. S., Shaban, A. M., & Abdulrasool, A. T. (2022). Mechanical and structural characteristics of PET fiber reinforced concrete plates. Smart Science, 10(3), 198–212.
Saad, M., Agwa, I. S., Abdelsalam Abdelsalam, B., & Amin, M. (2022). Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers. Mechanics of Advanced Materials and Structures, 29(4), 564–573. https://doi.org/10.1080/15376494.2020.1780352
Samarakoon, S. M. S. M. K., Ruben, P., Wie, J., & Evangelista, L. (2019). Case Studies in Construction Materials Mechanical performance of concrete made of steel fi bers from tire waste. Case Studies in Construction Materials, 11, e00259. https://doi.org/10.1016/j.cscm.2019.e00259
Shi, T., Liu, Y., Zhao, X., Wang, J., Zhao, Z., Corr, D. J., & Shah, S. P. (2022). Study on mechanical properties of the interfacial transition zone in carbon nanofiber-reinforced cement mortar based on the PeakForce tapping mode of atomic force microscope. Journal of Building Engineering, 61, 105248. https://doi.org/https://doi.org/10.1016/j.jobe.2022.105248
Siddique, R., Singh, M., & Jain, M. (2020). Recycling copper slag in steel fibre concrete for sustainable construction. Journal of Cleaner Production, 122559. https://doi.org/10.1016/j.jclepro.2020.122559
Signorini, C., & Volpini, V. (2021). Mechanical Performance of Fiber Reinforced Cement. 1–15.
Tahir, F., Sbahieh, S., & Al-ghamdi, S. G. (2022). Materials Today : Proceedings Environmental impacts of using recycled plastics in concrete. Materials Today: Proceedings, 62, 4013–4017. https://doi.org/10.1016/j.matpr.2022.04.593
Thomas, L. M., & Moosvi, S. A. (2020). Materials Today : Proceedings Hardened properties of binary cement concrete with recycled PET bottle fiber : An experimental study. Materials Today: Proceedings, xxxx, 3–8. https://doi.org/10.1016/j.matpr.2020.03.025
Unis, H., Faraj, R. H., Hilal, N., Mohammed, A. A., Far, A., & Sherwani, H. (2021). Use of recycled fibers in concrete composites : A systematic comprehensive review. Composites Part B, 215(February), 108769. https://doi.org/10.1016/j.compositesb.2021.108769
Zhao, Y., Qiu, J., Xing, J., & Sun, X. (2020). Recycling of quarry dust for supplementary cementitious materials in low carbon cement. Construction and Building Materials, 237, 117608. https://doi.org/10.1016/j.conbuildmat.2019.117608